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Observations from a lander fixed to the seafloor over the continental shelf in 124 m
of water provide highly resolved velocity measurements through nonlinear internal
waves of elevation. From these measurements we determine, for the first time, the
non-hydrostatic pressure disturbance (pnh) in nonlinear internal waves. For near-
bottom waves of elevation ranging in amplitude, a, from 12 to 33 m, the value of
pnh evaluated at the seafloor changes sign from> 0 to < 0 and back in accordance with
weakly nonlinear theory; peak values of |pnh| range from 25 to 90 Nm−2. The external
hydrostatic pressure disturbance due to the surface displacement (ηH ) is inferred from
horizontal accelerations. For elevation waves, ηH < 0; peak values range from 0.1 to
9 mm (1 to 90 N m−2). The internal hydrostatic pressure perturbation (pWh), caused by
isopycnal displacement, is inferred from measured streamlines and an ambient density
profile. Its value at the seafloor is > 0 for elevation waves; peak values range from 100
to 300 N m−2. |ηH | and seafloor values of |pnh|, pWh all increase monotonically with
a. Since |pnh| and pWh increase at roughly the same rate with a, no clear trend arises
in the degree to which waves become more or less non-hydrostatic as a changes.

A distinct bottom pressure signature is determined for bottom-trapped nonlinear
waves of elevation, a wave train consisting of a sequence of positive pressure
perturbations (dominated by pWh). By inference, a train of surface-trapped nonlinear
internal waves of depression will consist of a sequence of negative pressure
perturbations. A result of this analysis is that significant properties of the waves
can be discerned from a simple adequately resolved bottom pressure measurement.

1. Introduction
Where near-surface pycnoclines exist in the coastal ocean, large-amplitude nonlinear

solitary-like internal waves are commonly found (Apel et al. 1985; Moum et al. 2003).
These near-surface waves depress the pycnocline and hence are referred to as waves of
depression. Their surface signature is detectable by satellite-borne synthetic aperture
radar (SAR) as bands of alternating high and low radar reflectivity. Their ubiquitous
presence in SAR imagery (Fu & Holt 1982) has generated considerable interest in
their effect on acoustic propagation, their role in tidal energy dissipation and their
interactions with local biochemical signals. Where near-bottom pycnoclines exist, it
appears that high-amplitude nonlinear solitary-like internal waves of elevation are
also common (Bogucki, Dickey & Redekopp 1997; Hosegood & van Haren 2003;
Klymak & Moum 2003), although their surface signature is considerably weaker than
that of depression waves; in fact, such waves are generally not detectable by their
surface signatures. These waves have much in common with atmospheric phenomena
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such as the ‘Morning Glory’ observed in northern Australia (Christie, Muirhead &
Clarke 1981; Clarke, Smith & Reid 1981), which in turn have been the focus of
laboratory (Rottman & Simpson 1989) and theoretical (Horn et al. 2000) studies.

Observations of nonlinear internal waves include SAR, which defines the waves’
surface structure over scales of O(100 km), and acoustic backscatter (Moum et al.
2003), velocity and density profile measurements (Apel et al. 1995), all of which can
define the waves’ internal structure either in time or in space. There is also a
measurable bottom pressure signature which has not previously been quantified. This
consists of three components: an external hydrostatic pressure perturbation due to
deflection of the free surface caused by velocity convergence/divergence there, an
internal hydrostatic pressure perturbation due to the displacement of isopycnals, and
a non-hydrostatic pressure perturbation caused by vertical fluid accelerations.

This paper describes in situ observations of large-amplitude waves of elevation over
the continental shelf off Oregon. We first define the pressure disturbance of nonlinear
internal waves (§ 2.1) and discuss the structure of the disturbance predicted by small-
amplitude wave theory (§ 2.2). We then describe the basic experimental details (§ 3)
and observations (§ 4) that permit quantification of the component terms (§§ 5–7).
In § 8, we consider the sum of these component terms at the seafloor and how the
sum compares to an alternative estimate derived from the horizontal momentum
equation. The distinctive net bottom pressure signature of a train of elevation waves
is summarized in § 9 and compared to the inferred signature of a train of depression
waves. Conclusions (§ 10) follow.

2. Theoretical preliminaries
2.1. Definition of the pressure field

In this section, we define the pressure field associated with a two-dimensional wave
travelling in the x-direction with phase speed c. The vertical component of the
momentum equations for a non-rotating inviscid Boussinesq fluid may be written as

∂p

∂z
= −ρg − ρ0

Dw

Dt
, (2.1)

where
D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ w

∂

∂z
. (2.2)

For a wave travelling without change of form at phase speed c, the partial time
derivative may be written as

∂

∂t
= −c

∂

∂x
. (2.3)

In accordance with the Boussinesq approximation, the pressure anomaly p and the
density anomaly ρ represent small departures from a reference state in which the
density ρ0 is uniform and pressure is hydrostatic. For now, we neglect viscous terms.
In § 8, we consider their role at and near the seafloor.

We consider the pressure anomaly to be comprised of a hydrostatic and a non-
hydrostatic component, whose vertical gradients are given by the first and second
terms, respectively, on the right-hand side of (2.1). To complete the definitions of
these pressure components we must consider the boundary conditions at the surface.
The vertical coordinate is defined so that z =0 coincides with the seafloor. The
undisturbed water depth is given by H , and the surface displacement is ηH (x, t), so
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that the boundary condition p = 0 (approximating atmospheric pressure) applies at
the water surface, z = H +ηH . Assuming that the surface displacement is small enough
to justify a first-order Taylor series expansion in depth, we may write the pressure at
z = H as

p|z=H = −ηH

∂p

∂z

∣∣∣∣
z=H+ηH

= ρ0ηH

(
g +

Dw

Dt

) ∣∣∣∣
z=H+ηH

, (2.4)

which becomes

p|z=H = ρ0gηH (2.5)

with the assumption that accelerations of the ocean surface are small in comparison
with gravity. This pressure will be referred to as the external hydrostatic pressure due
to the wave.

Alternatively, the pressure may be evaluated from the horizontal momentum
equation written as

∂p

∂x
= −ρ0

Du

Dt
. (2.6)

In particular, the surface displacement is obtained by integrating the horizontal
momentum equation along z = H . Assuming the surface displacement vanishes at
x = ± ∞,

ηH = −1

g

∫ x

−∞

DuH

Dt
dx ′, (2.7)

where uH is the velocity in the direction of wave propagation at z = H .
We apply separate boundary conditions ph = 0 and pnh =0 at the undisturbed

surface z =H (Pedlosky 2003, for example), resulting in

ph =

∫ H

z

ρg dz′, (2.8)

and

pnh = ρ0

∫ H

z

Dw

Dt
dz′. (2.9)

The pressure field defined by (2.8) is termed the internal hydrostatic pressure. Equation
(2.9) defines the non-hydrostatic pressure.

Finally, in order to distinguish the wave disturbance from ambient conditions, we
define a density profile ρ0 +ρU (z)† and a wave-driven perturbation ρW (x, z, t), so that
the total density field is ρ0 + ρU + ρW . The internal hydrostatic pressure is partitioned
into an ambient profile,

pU =

∫ H

z

(ρ0 + ρU )g dz′, (2.10)

and a wave-driven disturbance,

pWh =

∫ H

z

ρWg dz′. (2.11)

In summary, the pressure consists of four component fields:

p = pU + pWh + ρ0gηH + pnh, (2.12)

† This is the upstream profile in the wave’s reference frame. Here after we refer to ρ0 + ρU (z) as
the ambient profile.
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which are computed using (2.10), (2.11), (2.7) and (2.9), respectively. Our interest
here is in quantifying the perturbation pressure field effected by observed geophysical
waves, the sum of the latter three terms on the right-hand-side of (2.12). Pressure
signals at the seafloor are of particular interest.

2.2. Predictions from small-amplitude wave theory

Before describing the observational results, we look briefly at some salient properties
of hydrostatic and non-hydrostatic pressure fields based on a simple theoretical
model of weakly nonlinear internal waves. In the limit of small amplitude and long
wavelength, internal waves are described by Korteweg–deVries (KdV) theory (Lee &
Beardsley 1974; Maslowe & Redekopp 1980; Gear & Grimshaw 1983). While the
relevance of this limit for oceanic internal waves is open to question, we will see that
the theory provides a useful qualitative picture of the waves’ pressure structure.

We assume a two-dimensional flow that is stationary in a reference frame moving
with velocity c. At lowest order, the isopycnal displacement η has the separable form

η(x, z, t) = A(s)φ(z), (2.13)

where s = x − c0t and c0 is the first-order approximation to the phase velocity. The
vertical displacement structure function φ(z) is a solution of

d

dz

[
(U − c0)

2 dφ

dz

]
+ N 2φ = 0, φ(0) = φ(H ) = 0. (2.14)

The buoyancy frequency N (z) is derived from the ambient density profile: N2(z) =
−gρ−1

0 dρU/dz and U (z) is the ambient velocity profile. The eigenfunction is normalized
so that φ(z0) = 1, where z0 is the level where |φ(z)| is a maximum. The velocity
components are given by:

u = U − ∂

∂z
[(U − c0)η]; w = (U − c)

∂η

∂x
. (2.15)

The waves of interest here are roughly described by the canonical first baroclinic
mode structure, for which φ is positive everywhere except at the boundaries and
exhibits a single maximum at z = z0. Results are easily generalized to higher-order
modes.

The function A is a solution of the KdV equation,

(c0 − c1)As + αAAs + βAsss = 0, (2.16)

in which

α = −3

2

∫ H

0

(U − c0)
2(dφ/dz)3 dz

∫ H

0

(U − c0)(dφ/dz)2 dz

; β = −1

2

∫ H

0

(U − c0)
2φ2 dz

∫ H

0

(U − c0)(dφ/dz)2 dz

(2.17)

and c1 is the second-order phase speed (Gear & Grimshaw 1983). Note that (2.17)
incorporates the Boussinesq approximation. A local maximum where A> 0 is called
a wave of elevation; a local minimum where A< 0 is called a wave of depression.

We now derive several results pertaining to the hydrostatic and non-hydrostatic
pressure fields described in the previous section. The density disturbance associated
with the wave may be written as

ρW = ρU (z − η) − ρU (z) ≈ −ηdρU/dz, (2.18)
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so that corresponding hydrostatic pressure disturbance (2.11) becomes

pWh(s, z) = ρ0

∫ H

z

ηN2 dz′ = ρ0A

∫ H

z

N2φ dz′. (2.19)

For the first baroclinic mode, φ > 0. Assuming stable stratification N 2 � 0, the
integral in (2.19) is positive (except at the upper boundary, where it vanishes). Thus,
the hydrostatic pressure disturbance has the same sign as A, i.e. positive for a wave of
elevation, negative for a wave of depression. Assuming N2 � 0, the depth of maximum
pWh coincides with φ = 0; thus, for a first baroclinic mode, pWh is maximized at z = 0.

The external hydrostatic (surface) pressure is obtained by integrating (2.6) along
z = H , namely,

ρ0gηH (s) = −1

2
ρ0(uH − c0)

2

∣∣∣∣
s

−∞
, (2.20)

where uH is the horizontal velocity at z = H . Assuming that the surface disturbance
vanishes far from the wave, this becomes:

ρ0gηH (s) = ρ0(UH − c0)
2Aφ′

H , (2.21)

where UH and φ′
H are the values of U and dφ/dz at z = H . For the first baroclinic

mode, φ′
H < 0, so the sign of the surface pressure is opposite to that of A (and hence

to that of the hydrostatic pressure).
We turn next to the non-hydrostatic pressure disturbance. Equation (2.9), after

substitution from (2.15) and (2.13) and neglect of higher-order terms, becomes

pnh(s, z) = ρ0

d2A

ds2

∫ H

z

(U − c0)
2φ dz′. (2.22)

This pressure signal comes entirely from local vertical accelerations; the advective
components of Dw/Dt are negligible. For the first baroclinic mode, the amplitude of
the pressure signal is a maximum at the seafloor. Also, since φ > 0, the integral in
(2.22) is positive (except at the surface, where it vanishes), so that the non-hydrostatic
pressure has the sign of the second horizontal derivative of the isopycnal displacement.
At the crest (trough) of a wave of elevation (depression), d2A/ds2 < 0 (> 0). Like the
surface pressure, the peak non-hydrostatic pressure opposes the hydrostatic pressure.

We now specialize further to the well-known soliton solution of the KdV equation:

A = a sech2χ, (2.23)

in which χ =(x − c1t)/L and a and L represent the amplitude and length scale,
respectively. The constants a, L and c1 are constrained by two relations:

aL2 = 12
β

α
, c1 = c0 +

1

3
αa. (2.24)

For waves of elevation (a > 0), the hydrostatic pressure is proportional to sech2χ .
The same is true of the surface pressure, but with the sign reversed. The non-
hydrostatic pressure is proportional to the second derivative: −2sech2χ (1−3tanh2χ).
This function is negative at the wave crest. On the flanks of the wave, the second
derivative crosses zero and attains symmetric local maxima, revealing a pressure
perturbation of opposite sign and 1/3 the magnitude of that found at the wave crest
(figure 1).

The total pressure signal is therefore a combination of the sech2 form of the hy-
drostatic and surface components and the more complex form of the non-hydrostatic



158 J. N. Moum and W. D. Smyth

–3 –2 –1 0 1 2 3

0

χ

Figure 1. Horizontal structure functions for the non-hydrostatic (solid), hydrostatic (dashed)
and surface (dotted) pressures due to a solitary wave of elevation. Relative amplitudes are
arbitrary, but typical of observations reported in this paper.

component. The relative magnitudes of these contributions to the pressure signal are
of considerable importance in the interpretation of oceanographic measurements. Of
particular interest is the pressure signal at the seafloor, as sensors can be placed there
easily and provide significant information about the internal wave field.

We focus here on the ratio of non-hydrostatic pressure to the sum of hydrostatic
and surface pressure signals at the seafloor:

R =

∣∣∣∣ pnh(0, 0)

pWh(0, 0) + ρ0gηH (0)

∣∣∣∣ =
a

a0

, (2.25)

in which

a0 =

∣∣∣∣∣∣∣∣

∫ H

0

N2φ dz′ + (UH − c0)
2φ′

H

2

∫ H

0

(U − c0)
2φ dz′

aL2

∣∣∣∣∣∣∣∣
, (2.26)

where the constant aL2 is given by (2.24) and (2.17). Note that c1 has been replaced
by c0 in keeping with the small-amplitude long-wavelength approximation.

In summary, small-amplitude theory predicts the following.
(i) The internal and external hydrostatic pressure disturbances have the same

horizontal structure as does the isopycnal displacement, i.e. sech2χ for a standard
soliton.

(ii) For a wave of elevation, the peak internal hydrostatic pressure is positive; the
peak non-hydrostatic and external hydrostatic pressures are negative. For a wave of
depression, these signs are reversed. The external hydrostatic pressure is independent
of depth. For first baroclinic mode waves, the peak non-hydrostatic and internal
hydrostatic pressures occur at z = 0.

(iii) The non-hydrostatic disturbance is driven mainly by local vertical
accelerations; advection terms are small.

(iv) The non-hydrostatic disturbance at the sea floor is proportional to the second
horizontal derivative of the isopycnal displacement as shown in figure 1.

(v) The ratio of non-hydrostatic to hydrostatic bottom pressures beneath the crest
is proportional to the wave’s amplitude.
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Figure 2. Location of the experiment off the Oregon coast in January 2003 (white
diamond). Depths are contoured at 50, 100 and 150m. The inset shows relative locations
of Chameleon density profile, bottom lander and SB mooring. The lander is 653m due east
of the mooring and 850m due south of the Chameleon density profile. The mean water depth
at lander and profiling station is 124m – the depth at the location of the SB mooring is 5m
greater.

3. Experimental details
We discuss observations made in January/February 2003 over the continental shelf

off Oregon (figure 2). Most significant for the analysis here is a time series of velocity
profiles from an upward-looking 300 kHz acoustic Doppler current profiler (ADCP)
mounted on a bottom lander deployed in 124 m water depth. The ADCP rested
1.2 m above the bottom on a gimballed base to ensure vertical orientation. Data were
sampled at 1 m vertical intervals; 5 s ensemble averages were recorded. The lander was
deployed on 20 January 2003 and data were returned until 22 January. Unfortunately,
a storage disk error precluded data recovery past 22 January.

Important ancillary data include extensive density profiling observations made, as
part of the same experiment, with our vertical turbulence profiler, Chameleon (Moum
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Figure 3. Density and velocity profiles assumed to represent ambient conditions. (a) Relative
potential density profile σθ = ρθ − 1000 kgm−3 measured using Chameleon at 0145 on 21
January 2003 at the position shown in the inset to figure 2. This profile is nearest in time at
this location to the velocity profile time series obtained at the bottom lander site. (b–e) ADCP
velocity profiles measured immediately prior to the arrival of each of the four bores shown in
figure 4.

et al. 1995). A protective ring on Chameleon’s nose permitted measurements to the
seafloor; density measurements were continuous above 2 cm height. Temperature
measurements were made at 1 m above the bottom at the locations of our bottom
lander (sampled at 1 s intervals) and a mooring (SB mooring; sampled at 2 min
intervals) deployed 653 m offshore of the lander. The positions of each of these
measurements is shown in the inset to figure 2.

Chameleon observations were made in a nearly continuous set of transects across
the shelf at the latitude shown in figure 2 over the period 21 January–05 February
2003. Also, a profiling times series was executed at the position shown by the
Chameleon triangle from 30 January to 01 February 2003.

4. Observations
Wintertime conditions off Oregon typically consist of northerly winds resulting in

a classical downwelling circulation with a broad southward flow (0.2–0.4 m s−1peak
speeds). Superimposed on the mean current structure is a strongly baroclinic tidal
(M2) velocity component with peak currents that can reach 0.1 m s−1, predominantly
across the shelf. A consequence of the downwelling circulation is a relatively deep
and well-mixed surface layer and a highly stratified near-bottom interface atop a
bottom boundary layer. The density profile shown in figure 3(a) is representative of
the vertical structure.

A 22 h record of eastward velocity (figure 4) shows a sequence of 4 wave trains. (The
following day, no wave trains were observed.) The range of amplitudes, a, is 12–33 m.
(Wave amplitude was determined as the maximum vertical streamline displacement
for each wave. Details of the streamfunction calculation are given in § 6.2.). The
number of waves in each train is difficult to establish precisely as the signal of the
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Figure 4. Velocity component (u) in the direction of wave propagation for a 22 h period on
20 January 2003 showing the passage of four groups of nonlinear internal waves. Inverted
triangles indicate the leading edges of the leading waves in each wave train.
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Figure 5. Temperature records measured 1m above the bottom at two locations separated by
653m on the continental shelf off Oregon. The lander (on which the upward-looking ADCP
was deployed from which the velocity measurements shown in figures 6 and 4 were obtained)
was due east of the SB mooring where the bottom depth was 5m shallower. Inverted triangles
indicate the leading edges of the leading waves in each wave train shown in figure 4 as
determined from velocity measurements. uf represents the average speed of the temperature
fronts as they passed between the two locations, determined from feature-tracking. The speeds
up are the mean fluid speeds measured in the three leading waves from each wave train.

trailing waves diminishes continuously, but the number appears to range between 5
and 11. The final wave train is peculiar in that the waves following the leading wave
have no, or greatly diminished, bottom signature.

The wave trains exist within the structure of larger-scale fronts that advect across
the shelf. The temperature record from the SB mooring is compared to the lander
temperature (both 1 m above the bottom) in figure 5. The times of the wave trains
defined from the velocity measurements (noted as inverted triangles above figure 5)
coincide (though not exactly) with the passage of the temperature fronts at the lander.
These fronts appear associated with an internal bore or gravity current (Moum et al.
2006), the wave trains forming at the head. The front speed uf is calculated as the
average speed of the temperature fronts as they passed between the two locations,
determined from feature-tracking.

The velocity structure through the three leading waves of the second wave train
in figure 4 is shown in figure 6. The general structure is similar to that described by
Moum et al. (2003) for a near-surface wave of depression, but inverted. The leading
and convergent edge of the wave at the bottom underlies an upward vertical velocity
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Figure 6. Two components of the velocity field measured from an upward-looking ADCP on
the sea floor as a sequence of nonlinear internal waves propagates past the site. (a) u, velocity
in the direction of wave propagation (in this case, due east); (b) w, vertical velocity. The same
colour scale is applied to both velocity image plots.

ahead of the wave’s velocity core. Above the velocity core, continuity requires a flow
in the opposite direction, so that the surface signature of the leading edge of the wave
is divergent flow. By comparison, the surface signature of the leading edge of a near-
surface wave of depression is marked by convergent flow. This distinction is important
for both surface and bottom signatures of each form of wave. Superimposed on the
wave’s velocity in figure 6 is the 10–12 s swell, which appears as vertical striations.
In figure 4 and in all subsequent analyses, this signal is removed by filtering (at 30 s;
8-pole lowpass Butterworth).

4.1. Phase speed

Our calculations of the pressure terms require an estimate of the phase speed for
each wave. We were unable to track individual waves and so cannot determine phase
speeds directly. Two estimates are discussed here.

Our first estimate was based on the horizontal parcel velocity within the wave crest,
whose mean value is denoted as up . Unless the wave is in a state of catastrophic
breakdown, up cannot exceed the phase speed. For large-amplitude internal waves,
however, up is typically of the same order as c (e.g. Lamb 2003). Therefore, we regard
up as a lower bound on the phase speed. The mean horizontal parcel velocity was
determined for the velocity cores within the three leading waves in each wave train
depicted in figure 4, 12 waves in all. The velocity cores were defined by the height
range [5 m, 0.6a] and the time range [20 s after the maximum du/dx|z=0 at the wave’s
leading edge, 20 s before the minimum du/dx|z=0 at the wave’s trailing edge]. We
note that these parcel velocities are roughly consistent with the advective speeds of
thermal fronts (uf ) upon which these waves were observed (figure 5).

Our second estimate (and the one we ultimately chose for use in subsequent
analyses) is the phase speed c1 of the first baroclinic mode in weakly nonlinear theory
(2.24). This calculation requires estimates of the ambient density and velocity profiles
(ρU (z), U (z)) and of the wave amplitude a. Lacking individual ambient density profiles,
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Figure 7. �, c1 and �, up versus a determined for 12 individual waves.

we employed the profile shown in figure 3(a) for all waves (comparison of this density
profile to the sequence of density profiles obtained on 30 January indicates relatively
weak variation). We assumed that the relevant ambient velocity profile for each wave
group was the cross-shelf flow measured just before its arrival at the observation
site; hence, we used a separate velocity profile for each of the four wave groups
(figure 3b–e). Because the streamfunction calculation (described in § 6.2) requires the
phase speed as input, the calculation had to be iterated. The parcel speed up was used
as a starting value. The iteration converged to within a small fraction of a per cent
after ∼5 repetitions, thus furnishing mutually consistent estimates of amplitude and
phase speed for each wave.

Figure 7 shows both up and c1 as functions of a. As expected, phase speeds exceed
parcel speeds. Since this also means that c1 >uf , at the point of observation the
waves are propagating more rapidly than the thermal fronts. Hereinafter, we simply
refer to c1 as c.

5. Non-hydrostatic pressure
The high-fidelity velocity measurements obtained by fixing the measurement on the

sea floor permit differentiation of the velocity signal to determine the vertical fluid
accelerations that contribute to pnh (equation (2.9)). The computations of ∂w/∂t

and w∂w/∂z are simply performed by differencing the filtered velocity data, as in
figure 8. To evaluate the remaining term, we assume the wave propagates past our
measurement point at speed c without change of form, from which it follows that

u
∂w

∂x
= −u

c

∂w

∂t
. (5.1)

Using this, we construct the time series

Dw

Dt
=

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
. (5.2)

The component terms of the vertical fluid acceleration are shown in figure 8 for
our example of the leading three waves in figure 6. While details of the structure vary,
as do amplitudes, the general structure of each component of vertical acceleration is
common to all of the three example waves in figure 8. The local acceleration ∂w/∂t

is relatively uniform with depth. It changes from positive ahead of the wave core
where fluid is accelerated upward to negative above the wave core to positive behind
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Figure 8. (a) u, (b) w, as in figure 6, with the signature of the surface swell removed by
filtering. The lower three panels show components of vertical fluid acceleration computed
from the vertical velocity record: (c) ∂w/∂t , (d) u∂w/∂x, (e) w∂w/∂z; and the total vertical
acceleration (f ) Dw/Dt . The same colour scales were applied to each set of velocity and
acceleration images.

the wave core (cf. figure 1). As predicted by small-amplitude wave theory (§ 2.2),
this term dominates the vertical integral; its structure thus defines the form of the
non-hydrostatic pressure signal at the sea floor (cf. figures 8c and 8f ). The advective
accelerations are mostly positive and concentrated at the periphery of the wave core.

The non-hydrostatic pressure is computed using equation (2.9). Because of the
limitations of the ADCP measurements, data are not available within 24 m of
the surface. For these bottom-trapped waves, however, both density and velocity
perturbations are greatly attenuated toward the surface, and we assume that both
internal hydrostatic and non-hydrostatic pressures vanish above 24 m depth with
negligible error. The resulting pressure disturbance is shown in figure 9(a). The
amplitude is negative at the wave crest, positive in symmetric regions about the crest,
and has maximum amplitude at the seafloor.

The non-hydrostatic pressure at the seafloor is po
nh(x) = pnh(x, z = 0).† The bottom

pressure signature is shown in figure 9(b). Leading and trailing positive pressure

† Although our measurements are time series, we have found it instructive to represent local
(that is, for a single wave) computations of wave pressure as spatial series. To do this, we set
x = − c(t − t0), where t0 is the time when the wave crest passed the observation site.
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Figure 9. (a) pnh(x, z) computed for the leading wave of figure 8. (b) po
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perturbations bound a negative pressure perturbation beneath the wave core. This
signature is clearly repeated over the 22 h period (figure 10), though with varying
amplitude and duration. The structure of po

nh through a single wave is as expected on
the basis of small-amplitude theory (figure 9b; cf. figure 1). The ratio of positive to
negative peak amplitudes is somewhat greater than the value 1/3 predicted in § 2.2.

6. Internal hydrostatic pressure
Unfortunately, we do not have simultaneous velocity and density measurements

to determine both pnh and pWh directly. We do have density measurements that
permit non-simultaneous direct estimates of pWh. These estimates provide a guide to
the expected internal hydrostatic pressure perturbation. We then make an indirect
assessment of pWh by mapping streamlines to isopycnals so that pWh and pnh are
estimated simultaneously.
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6.1. Determination of pWh from density profiles

Trains of nonlinear internal waves of elevation were a ubiquitous part of the near-
bottom flow field during January 2003, and the density structure of the waves shown
in figure 11(a) on 31 January (as well as their high-frequency acoustic backscatter
structure; Moum et al. 2006) is similar to what we might expect from the velocity
data on 20 January. Amplitudes, number of waves in a group, and wavelengths were
all similar, as was the ambient density profile (figure 3). We use these examples to
determine pWh directly.

The perturbation density profile ρW (z) is defined as the deviation from an ambient
density profile ρU , defined as the average of four profiles measured immediately prior
to the arrival of the wave. The internal hydrostatic pressure perturbation is then given
by (2.11); its value at the sea floor is po

Wh(x) = pWh(x, z = 0). Density variations due
to the larger scale shelf circulation also cause po

Wh to vary. This is seen in figure 11(b),
in which po

Wh is reset ahead of each wave train where each new ambient density
profile is defined. We are concerned here only with the pressure perturbations due to
the waves at the leading edge of each density front (noted by the inverted triangles
above figure 11a) and assess their value by highpass filtering the signal in figure 11(b)
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at 3 h (4- pole Butterworth). The filtered signal is denoted 〈po
Wh〉 (figure 11c), which

represents wave-induced internal hydrostatic pressure perturbations; these range from
about 50 to 150 N m−2

6.2. Determination of pWh from streamlines

To estimate internal hydrostatic pressure perturbations in waves for which we
have velocity but no corresponding density measurements, requires two significant
assumptions. First, the density profile shown in figure 3 is assumed to be representative
of ambient conditions found ahead of the waves. Secondly, we assume that the waves
are inviscid, two-dimensional and propagate without change of shape with a known
speed and direction. In this case, mass conservation implies that streamlines calculated
in the wave’s reference frame are parallel to isopycnals. The density field may therefore
be calculated by extending the ambient density values along streamlines.

The simplest estimate of the streamfunction is obtained by vertical integration of
the horizontal velocity:

ψu(x, z) =

∫ z

0

(u(x, z′) − c) dz′. (6.1)

We may also calculate the streamfunction as

ψwL(x, z) = ψu(xL, z) −
∫ x

xL

w(x ′, z) dx ′, (6.2)

or

ψwR(x, z) = ψu(xR, z) +

∫ xR

x

w(x ′, z) dx ′, (6.3)

in which xL and xR are locations upstream and downstream of the wave. In a perfectly
two-dimensional flow with no measurement errors, these three estimates would be
equal. Here, ψwL and ψwR are regarded as less reliable because they require the use
of ψu as a boundary condition. This uncertainty is reduced by defining a combined
estimate:

ψw = 0.5(ψwL + ψwR), (6.4)

which is then averaged with ψu to obtain the final estimate:

ψ = 0.5(ψu + ψw). (6.5)

Velocity components derived from this streamfunction generally match measured
velocities to within 2–3 cm s−1.

The perturbation density field was determined by extending density values from the
assumed ambient profile along streamlines, then subtracting the ambient profile. The
internal hydrostatic pressure perturbation is then given by (2.11).

The resulting internal hydrostatic pressure perturbation determined for the example
wave shown in figure 9 is nearly positive definite. It rises to a maximum value at
the seafloor beneath the wave crest (figure 12a, b). This maximum value is denoted
maxxp

o
Wh. Values of maxxp

o
Wh ranged from 100 to 300 Nm−2.

To assess the uncertainty in our estimate of pWh owing to imprecise knowledge
of c, we compare the bottom pressure computed using the phase speed c1 with that
found using the lower bound up (figure 7). Use of up increases our estimate of the
hydrostatic pressure by about 15%.

To assess the uncertainty due to imprecise knowledge of the streamfunction, we
recompute the profile po

Wh(x) for the three estimates ψu, ψw and ψ (figure 13b). Both
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Figure 13. Sources of uncertainty in the bottom hydrostatic pressure. (a) Dependence on the
estimated phase velocity. Solid curve: po
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the amplitude and the width of the seafloor pressure signal are affected by our choice
of streamfunction. The effect on amplitude is about 5%.

We conclude that these estimates of the hydrostatic pressure are uncertain by about
20%. For the seafloor values shown in figure 13, the uncertainty is about 60 Nm−2.

In summary, we have made two estimates of pWh, one direct but not coincident with
our velocity measurements, the second coincident but indirect. In the first case, peak
values of po

Wh range from 50 to 150 N m−2; in the second case from 100 to 300 Nm−2.
The direct estimate is based on a sequence of density profiles, each separated by
roughly five minutes. The duration of individual waves shown in figure 6 is less than
10 minutes. We have, therefore, undersampled isopycnal variability created by the
waves and hence, their internal hydrostatic pressure perturbation – this results in an
underestimate of peak values. By comparison, despite other shortcomings discussed
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computed from the near-surface velocity field for the leading wave shown in figure 6.
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above, the indirect estimate of pWh benefits from a continuous record (5 s sampling).
Aside from any problems in determination of pWh, it is quite possible that variations
in the amplitudes of the waves between the two sampling periods account for the
differences in pWh.

7. Surface displacement
The surface displacement ηH (x) caused by the wave is estimated by integration along

x of the measured horizontal fluid acceleration at the surface (equation (2.7)), using
a method similar to that described in § 5. Two limitations arise. First, reliable velocity
measurements can only be made to within 24 m of the surface. (Reflection of the
side lobes of the acoustic transducer contaminates measurements near acoustically
reflecting surfaces, the free surface being an example.) However, we expect the
difference in velocity between the surface and 24 m to be relatively small in these
bottom-trapped waves and assume that, for our purpose, they are equal. More serious
is the matter of ADCP beam-spreading as a function of range. At 100 m range (24 m
depth), beam separation is about 70 m, a significant fraction of the wavelength. This
means that a velocity measurement will average over the maximum gradient region.
This can be minimized by recording along-beam velocities (Scotti et al. 2005) and
then converting to geographical coordinates (not done here) and by sampling rapidly
(which was done here). The result is a wavelength-dependent underestimate of the
gradients of horizontal velocities at large ranges, and hence of ηH (x). Subsampling a
sech2(x) model of the surface velocity field suggests the underestimate in the surface
convergence to be 20% at 100 m wavelength.

Integration along x produces a negative displacement at the divergent leading
edge, forming a surface depression above the wave crest (figure 14a). Behind
the crest, continued integration along the convergent trailing edge reduces the
depression to 0. The maximum displacement is approximately 0.007 m (in equivalent
pressure units, about 70 Nm−2). The range of maxxηH from all of the twelve
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waves examined is 0.0001–0.009 m and increases monotonically with increasing wave
amplitude (figure 15). Again, this must be an underestimate of the maximum surface
displacement.

8. Wave pressure disturbance at the seafloor
Figure 14(b) shows the internal hydrostatic and non-hydrostatic bottom pressures

and figure 14(c) the net bottom pressure evaluated at the seafloor for our example
wave. Here, the hydrostatic component dominates and the net pressure perturbation
is therefore positive definite. Comparison of figure 14(b) with figure 1 indicates agree-
ment of the observed horizontal structure with that predicted on the basis of small-
amplitude theory.

An independent estimate of seafloor pressure is obtained by horizontal integration
of (2.6) near the seafloor. Until now, we have ignored the fact that our velocity
measurements begin not at z =0, but 2 m above the bottom, and we have assigned
the lower limits of the vertical integrals to z = 0. While w at z = 2 m is greatly
diminished from its values higher in the water column and hence the distinction is
unimportant, u can be quite large at z = 2 m (up to 0.4 m s−1) whereas it must vanish
at z = 0. First, we consider the pressure obtained by integration of (2.6) at z = 2m to
represent that at z = 0. We then consider the consequence of u(z = 0) = 0.

po
Du/Dt = −ρ0

∫ x

−∞

Du

Dt

∣∣∣∣
z=2m

dx ′ (8.1)

is compared to the sum po
Wh + po

nh + ρ0gηH in figure 16. These estimates indicate
po

Du/Dt 	 0.55(po
Wh + po

nh + ρ0gηH ).
One reason for the difference in the two estimates of seafloor pressure perturbation

is our certain underestimate of |ηH | owing to ADCP beam spreading. Since ηH < 0,
this produces a high bias to our estimate of positive seafloor pressure from a vertical
momentum balance. An underestimate of ρ0gηH by a factor of 2 would approximately
satisfy the inequality shown in figure 16; however, it is unlikely that the error is this
large (recall that we estimate it to be 20%).

Perhaps an alternative explanation for the difference in the two estimates of seafloor
pressure perturbation is associated with an additional term not considered in (8.1).
We first consider the limiting case, at the seafloor, and then the consequence of an
imbalance immediately above the seafloor. At the seafloor z =0, u =0, and we cannot
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Figure 16. Comparison of total pressure evaluated at the seafloor by integration of vertical
(abscissa) and horizontal (ordinate) momentum equations.

consider the fluid to be inviscid; the horizontal momentum equation is

∂p

∂x
=

∂τ

∂z
, (8.2)

τ representing the turbulent stress, which we consider to be most significant in terms
of its vertical divergence. Since the seafloor value of ∂p/∂x changes sign across the
wave (figure 14), so must ∂τ/∂z. If τ is represented by the product of a positive
definite eddy viscosity (Kv) and the velocity gradient,

τ = Kv

∂u

∂z
, (8.3)

there must either be a change in slope of the vertical gradient of Kv or a change in
curvature of the near-bottom velocity profile (if the latter, we cannot detect it from
our observations above 2 m height). This is similar to the case of a steady flow in the
boundary layer over an obstruction, for which the pressure gradient changes sign at
the summit (Kundu 1990, for example).

In considering the seafloor balance of horizontal momentum, we might also suspect
that the turbulence stress divergence contributes to the balance at 2 m height, with the
potential of improving the correspondence shown in figure 16. Future observations
will address this issue.

9. Signatures at seafloor and surface
Large-amplitude nonlinear internal waves exhibit distinctive surface and seafloor

signatures, determined by the velocity field and the stratification. Some of the
characteristics that distinguish elevation waves from depression waves are clear.
Some are less so. It is considerably more difficult to obtain such a clear measurement
of near-surface velocities induced by surface-trapped depression waves as we have
obtained for these bottom-trapped elevation waves, because of the relative difficulty
of making high-fidelity measurements from either a surface vessel or mooring, both
of which are contaminated by motions of the free surface. Here, we infer surface and
seafloor signatures of surface-trapped depression waves by analogy.

9.1. Surface signature

The alternate convergent/divergent surface flow induced by a nonlinear internal
wave produces two related but distinct surface expressions. The first is the surface
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displacement, related to the flow convergence at the surface via (2.7). For the waves
of elevation examined here, we have estimated this to range up to a value of
order 0.01 m. The more noticeable surface expression is the modulation of the
gravity/capillary wave field, enhanced in convergent flow and diminished (to the
extent of producing a nearly flat surface) in divergent flow. This results in a visible
twinkling at the convergent edge of a depression wave (Moum et al. 2003), and
a clear radar signature both from a surface vessel and from space (Fu & Holt
1982). Indeed, detection of nonlinear internal waves from spaceborne SAR has
shown their ubiquity and has provided considerable guidance toward determining
generation mechanisms (http://www.internalwaveatlas.com/). The surface expression
of bottom-trapped internal waves will diminish as the water column becomes deeper.
However, at least in 124 m of water, it does exist. In the present examples, the surface
divergence/convergence is of order 5 × 10−4 s−1. While this is an order of magnitude
smaller than that found for the surface-trapped waves of Moum et al. (2003), its
signature may yet be observable.

9.2. Seafloor signature

The structure of the components of the perturbation pressure field at the sea floor
through our example wave is summarized in figure 14(a, b). Summed, the non-
hydrostatic bottom pressure perturbation, po

nh, plus the internal hydrostatic pressure
perturbation, po

Wh, and external hydrostatic pressure perturbation, ρ0gηH , comprise
the total bottom wave perturbation pressure signal (figure 14c). For this example, the
result is a positive pressure perturbation at the sea floor.

A comparison of peak values of po
Wh and po

nh indicates a tendency for each to
increase with a (figure 17a, b). The tendency of the ratio R is not clear, but it
is certainly < 1 (figure 17c) (as defined here, R is an underestimate, since we have
underestimated ηH ). We note that a value of R = 1 means that the non-hydrostatic
wave pressure exactly balances the total hydrostatic pressure, leaving no seafloor
signal. A value R > 1 indicates a strongly non-hydrostatic wave, so that the seafloor
pressure perturbation is negative, rather than positive.

We turn next to a comparison of the relative magnitudes of the non-hydrostatic
and hydrostatic pressure components with the predictions of small-amplitude theory
as described in § 2.2. This comparison requires that we compute the amplitude scale
a0 using profiles of ambient density and velocity for each wave. As above, the ambient
density profile for all waves was that shown in figure 3(a). We then assumed that
each wave group (or bore) propagates in the cross-shelf flow measured just before its
arrival at the observation site (figures 3b–d). This assumption results in a different
value of a0 for each wave group, and thus allows better comparison between the
available observations and small-amplitude theory (figure 18).
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versus wave amplitude scaled by a0, as described in § 2.2. The density profile is that shown in
figure 3(a); the ambient velocity is recalculated for each wave group from ADCP measurements
(figure 3b–e). Small-amplitude theory predicts R = a/a0, as shown by the straight line.

The observed values of R and the predicted values (a/a0) are both distributed
about the median value 0.3. The observed and predicted mean values are similar to
this, and agree with each other to within standard error. Deviations about the
mean, however, are not well correlated; in fact, their correlation is statistically
insignificant. The theoretical values show a standard deviation of 0.17, while the
standard deviation for measured values is only 0.07. This could mean that, contrary
to the theoretical prediction, there is no relationship between R and wave amplitude,
as figure 17 would seem to suggest. There is, however, too much uncertainty in
the present results to justify this conclusion. Measurement errors such as those due
to beam spreading cannot account for the degree of scatter in figures 17 and 18,
but significant assumptions have been made in interpreting those measurements,
both for the purpose of estimating the pressure components and for the purpose
of evaluating the predictions of weakly nonlinear theory. To estimate pressure
components, we have assumed that the wave is two-dimensional and propagates
with a fixed, known phase velocity. We have also assumed that the density profile
shown in figure 3a is representative of the entire observation period. To apply
weakly nonlinear approximations, we have assumed that the wave propagates in an
unchanging environment with known vertical profiles of both density and velocity. In
fact, the coastal environment is highly energetic, with wave motions on a range of
temporal and spatial scales influencing the propagation of the high-frequency waves
discussed here. More comprehensive measurements, and possibly a more realistic
theory, will be needed to develop a sound understanding of the component pressures
and their dependence on wave amplitude.

9.3. Signatures of near-surface waves of depression

Our analysis reveals a distinctive structure of the seafloor pressure record owing to the
passage of a train of nonlinear internal waves of elevation (figure 19a). This structure is
a direct consequence of the velocity field in the waves, the stratification and the relative
magnitudes of po

nh, ρ0gηH and po
Wh. The net positive pressure disturbance arises from

the dominance of the internal hydrostatic pressure perturbation. By comparison,
component pressure perturbations at the seafloor beneath a train of near-surface
waves of depression will have a similar structure, but of opposite sign (figure 19b).
Under typical conditions, the near-surface velocities of surface-trapped waves are
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Figure 19. (a) Schematic showing surface displacement (exaggerated) and internal
(hydrostatic and non-hydrostatic) pressure in a train of three waves of elevation propagating
to the right as deduced from our measurements. The arrows represent relative speeds across
the wave fronts and induced speeds near the surface. (b) Analogous structure inferred for a
train of three depression waves. In the depression wave, the inferred surface displacement is
relatively larger and the net seafloor pressure signal relatively smaller.

much greater than those of bottom-trapped waves. This is also true of the surface
divergences/convergences (see figure 1 from Moum et al. 2003, for example). As a
result, the magnitudes of surface displacements must be relatively greater via equation
(2.6) (for comparison, Pinkel (2000) estimated 0.2 m positive surface displacements in
large-amplitude (> 60 m) deep-water solitary waves of depression propagating across
the equator). Consequently, the external hydrostatic pressure, which opposes pWh, is
relatively larger, with R tending to 1. This will tend to reduce the net seafloor pressure
signature, which is, of course, evident in the reduced relative lateral acceleration there.
A competing factor, that near-surface stratification is typically greater than near-
bottom stratification, will tend to increase po

Wh, thereby increasing the net seafloor
pressure signature. In infinitely deep water the seafloor pressure of a depression wave
vanishes. In sufficiently deep water the signal will be below detection limits.

Another factor that is not clear is the geophysical range of R. In the waves we
have observed, po

Whclearly dominates the net seafloor wave perturbation pressure and
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is 3–5 times greater than po
nh. If our estimates of R are typical of depression waves,

their signature will be a negative pressure perturbation at the seafloor.

10. Conclusions
Measurements taken over the Oregon continental shelf reveal bottom-trapped waves

of elevation. We have inferred pnh and ηH from measured accelerations, and pWhby
mapping isopycnals to measured streamlines. Spatial structures of the component
pressure fields are described well by the small-amplitude theory discussed in § 2.2.
Peak values of po

nh are < 0, ηH < 0 and po
Wh > 0. Observations confirm that the non-

hydrostatic pressure is mainly associated with local vertical accelerations. Maxx |po
nh|,

maxx |ηH | and maxxp
o
Wh increase monotonically with wave amplitude.

Particular attention was paid to the ratio of peak non-hydrostatic to hydrostatic
pressures at the seafloor, R, whose value determines the form of the net bottom
pressure. In the observed range R 	 0.2–0.4, the bottom pressure signature of
elevation waves is characterized by a sequence of positive pressure perturbations.
By direct analogy (which may not be strictly correct), similar conditions will result in
a sequence of negative seafloor bottom pressure perturbations for depression waves in
shallow water. While the small-amplitude theory described in § 2.2 provides a useful
qualitative description of the pressure fields and predicts a median value R =0.3 that
is in good agreement with observations, it is inadequate to predict variations of R

with wave amplitude. Improved theoretical predictions will most likely result from
more complete measurements of ambient density and velocity profiles. These results
also emphasize the importance of establishing the geophysical range of R via direct
observation.

Peak values of po
nh ranged from −25 to −90 Nm−2, of ρ0gηH from −10 to −90 Nm−2

and of po
Wh from 100 to 300 N m−2. The sum of these (O(100) N m−2, equivalent to

about 1 cm of water or 0.015 p.s.i.) is a measurable signal. While these waves were not
sensed by the relatively crude pressure sensors on our ADCP, they have sufficiently
large seafloor pressure signals that they can be detected with currently-available
commercial pressure sensors (which claim resolution better than 1 mm of water). It
is possible that new types of inexpensive seafloor wave antennae can be deployed to
investigate more thoroughly the origin, evolution and climatology of these waves.

Nonlinear internal waves of elevation in relatively deep water exhibit significantly
smaller (though non-zero) surface signatures than near-surface depression waves. This
probably precludes an equivalent spaceborne mapping of elevation waves in a manner
employed for depression waves. As elevation waves shoal, their surface expression
presumably strengthens, so that detection in shallow water may be possible (Zhao
et al. 2004). The distinction between the two forms is clear: while a depression wave
twinkles at its leading edge and is therefore more reflective there, an elevation wave
twinkles at its trailing edge.

Finally, surface pressure measurements have long been used in atmospheric
studies, to detect the presence and surface structure of non-hydrostatic flows (across
mountain ranges, for example Bougeault et al. 1997). In particular, surface pressure
measurements have clearly defined the ‘Morning Glory’ (Smith, Crook & Roff 1982)
and related waves (Fulton, Zrnic & Doviak 1990). However, all of the atmospheric
studies lack the detailed observations of the internal structure of the flows to
discern the component pressure perturbations. With the detailed observations made
of bottom-trapped waves discussed herein, we have been able to diagnose these
components. With the exception of an external hydrostatic pressure disturbance in
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the atmosphere (owing to the lack of an equivalent free surface), we expect the roles
of internal hydrostatic and non-hydrostatic pressures to be similar.
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